32,477 research outputs found

    Reliability and Validity of Ratings of Perceived Exertion in Persons With Multiple Sclerosis

    Get PDF
    Objective: To test the reliability and validity of using the Borg rating of perceived exertion (RPE) scale (ratings 6e20) in persons with multiple sclerosis (PwMS). Design: Nonrandomized repeated measures. Setting: Research laboratory. Participants: Volunteer sample (N=27) comprised of 16 PwMS (10 women) and 11 age-matched persons without multiple sclerosis (MS) (6 women). Clinical measures included symptomatic fatigue, depression, and MS functional capacity. Interventions: A submaximal cycling test was performed to estimate maximal capacity. Participants then pedaled for 2 minutes at 50% and 60% of predicted maximal oxygen consumption per unit time (V̇O2), and physiological measures and RPE were obtained (week 1: response protocol). One week later, participants replicated the prescribed V̇O2 using the RPE range from week 1 (week 2: reproduction protocol). V̇O2, heart rate, and respiratory quotient were measured continuously; RPE and workload were measured every minute; and blood lactate and mean arterial pressure were measured after exercise. Main Outcome Measures: RPE, workload, V̇O2, and heart rate from week 1 to week 2. Results: PwMS had greater fatigue (P2, and heart rate were similar between groups. Both groups had an intraclass correlation coefficient \u3e.86 for RPE, workload, and V̇O2. The intraclass correlation coefficient was comparatively lower for heart rate for both groups (MS group: .72, non-MS group: .83). RPE was highly correlated with V̇O2(rZ.691, P Conclusions: Results suggest that RPE can be reliably reproduced, is valid, and may be used in exercise prescription in mildly to moderately impaired PwMS during cycling exercise

    Idealized Slab Plasma approach for the study of Warm Dense Matter

    Full text link
    Recently, warm dense matter (WDM) has emerged as an interdisciplinary field that draws increasing interest in plasma physics, condensed matter physics, high pressure science, astrophysics, inertial confinement fusion, as well as materials science under extreme conditions. To allow the study of well-defined WDM states, we have introduced the concept of idealized-slab plasmas that can be realized in the laboratory via (i) the isochoric heating of a solid and (ii) the propagation of a shock wave in a solid. The application of this concept provides new means for probing the dynamic conductivity, equation of state, ionization and opacity. These approaches are presented here using results derived from first-principles (density-functional type) theory, Thomas-Fermi type theory, and numerical simulations.Comment: 37 pages, 21 figures, available, pdf file only. To appear in: Laser and Particle beams. To appear more or less in this form in Laser and Particle beam

    Quantum Dot in 2D Topological Insulator: The Two-channel Kondo Fixed Point

    Full text link
    In this work, a quantum dot couples to two helical edge states of a 2D topological insulator through weak tunnelings is studied. We show that if the electron interactions on the edge states are repulsive, with Luttinger liquid parameter K<1 K < 1 , the system flows to a stable two-channel fixed point at low temperatures. This is in contrast to the case of a quantum dot couples to two Luttinger liquid leads. In the latter case, a strong electron-electron repulsion is needed, with K<1/2 K<1/2 , to reach the two-channel fixed point. This two-channel fixed point is described by a boundary Sine-Gordon Hamiltonian with a KK dependent boundary term. The impurity entropy at zero temperature is shown to be ln2K \ln\sqrt{2K} . The impurity specific heat is CT2K2C \propto T^{\frac{2}{K}-2} when 2/3<K<1 2/3 < K < 1 , and CT C \propto T when K<2/3 K<2/3. We also show that the linear conductance across the two helical edges has non-trivial temperature dependence as a result of the renormalization group flow.Comment: 4+\epsilon page

    Understanding Well-Being in Multi-Levels: A review

    Get PDF
    Well-being is not only an emerging research agenda, but also a critical issue concerning the individual as well as the societal development, because how the issue is viewed has a huge theoretical as well as practical, even policy, implication. In academic, while some argue that well-being is in the subjective perception of one’s life or psychological functioning, others argue that well-being is in the objective conditions and the broader environment. This paper, drawing on psychology tradition, tries to go beyond the dichotomy of well-being as either an individual attribute or external conditions. Instead, this article acknowledges the multi-levels of well-being are closely tied and should be taken into accounts when well-being is concerned. We will provide a brief review of the two major approaches – subjective well-being and quality of life – of well-being before the multi-level approach is introduced. The strength and challenges of the multilevel approach will be discussed

    Birth Kick Distributions and the Spin-Kick Correlation of Young Pulsars

    Full text link
    Evidence from pulsar wind nebula symmetry axes and radio polarization observations suggests that pulsar motions correlate with the spin directions. We assemble this evidence for young isolated pulsars and show how it can be used to quantitatively constrain birth kick scenarios. We illustrate by computing several plausible, but idealized, models where the momentum thrust is proportional to the neutrino cooling luminosity of the proto-neutron star. Our kick simulations include the effects of pulsar acceleration and spin-up and our maximum likelihood comparison with the data constrains the model parameters. The fit to the pulsar spin and velocity measurements suggests that: i) the anisotropic momentum required amounts to ~10% of the neutrino flux, ii) while a pre-kick spin of the star is required, the preferred magnitude is small 10-20rad/s, so that for the best-fit models iii) the bulk of the spin is kick-induced with Ωˉ\bar \Omega ~120rad/s and iv) the models suggest that the anisotropy emerges on a timescale τ\tau ~1-3s.Comment: 37 pages, 13 figures, ApJ accepte

    On the propagation of a two-dimensional viscous density current under surface waves

    Get PDF
    This study aims to develop an asymptotic theory for the slow spreading of a thin layer of viscous immiscible dense liquid on the bottom of a waterway under the combined effects of surface waves and density current. By virtue of the sharply different length and time scales (wave periodic excitation being effective at fast scales, while gravity and streaming currents at slow scales), a multiple-scale perturbation analysis is conducted. Evolution equations are deduced for the local and global profile distributions of the dense liquid layer as functions of the slow-time variables. When reflected waves are present, the balance between gravity and streaming will result, on a time scale one order of magnitude longer than the wave period, in an undulating water/liquid interface whose displacement amplitude is much smaller than the thickness of the dense liquid layer. On the global scale, the streaming current can predominate and drive the dense liquid to propagate with a distinct pattern in the direction of the surface waves. © 2002 American Institute of Physics.published_or_final_versio

    Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method

    Get PDF
    Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap

    The X-ray modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017

    Get PDF
    We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations of the gamma-ray binary PSR J2032+4127/MT91 213, of which the periastron passage has just occurred in November 2017. In the Swift X-ray light curve, the flux was steadily increasing before mid-October 2017, however, a sharp X-ray dip on a weekly time-scale is seen during the periastron passage, followed by a post-periastron X-ray flare lasting for ~20 days. We suggest that the X-ray dip is caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the pulsar. An orbital GeV modulation is also expected in our model, however, no significant variability is seen in the Fermi-LAT light curve. We suspect that the GeV emission resulted from the interaction between the binary's members is hidden behind the bright magnetospheric emission of the pulsar. Pulsar gating technique would be useful to remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing solution over the periastron passage is provided in the future.Comment: 6 pages, including 2 figures. Accepted for publication in Ap
    corecore